CHOITHRAM SCHOOL, MANIK BAGH, INDORE

ANNUAL CURRICULUM PLAN SESSION 2020 – 2021

CLASS: XI

SUBJECT: PHYSICS

Month &	Theme/ Sub-theme	Lear	ning Objectives	Activities & Resources	Expected Learning	Assessment
Working		Subject Specific	Behavioural		Outcomes	
Days		(Content Based)	(Application based)			
June, 17	Vectors/	Understand	• How the different units of	Lab Activities	Students will learned	Students will
	Basic	the various	same physical quantities	1.Determination of diameters of		be asseson the
	mathematical	systems of	are related.	objects using vernier calipers .	• the various	basis of their
	concepts	units	Applications of units in	2.Determination of diameters of	systems of units	observation
	Scalar and vector	• What is the	export import purposes	objects using screw gauge .	the relation between	and accuracy
	quantities;	utility of	• Types of error can be	3. Determination of radius of	different units of different	skills
	Position and	different units	possible.	curvature by spherometer	systems	
	displacement	Why different	How the mathematical		the concept of scalar and	
	vectors, general	systems are	tools are useful in		vector quantities	
	vectors and their	introduced	minimizing errors.		• the concept of dot and	
	notations; equality	• Understand	• Applying the knowledge		cross product of two	
	of vectors,	the systems of	of units in day to day life.		vectors.	
	multiplication of	units in India			• the triangle polygon	
	vectors by a real	and in other			and parallelogram	
	number; addition	countries.	• Apply the concept cross			
	and subtraction of	To understand	product in calculating the		laws of vectors.	
	vectors. Unit	the meaning of	area of a parallelogram			
	vector; Resolution	dimensional	after finding the			
	of a vector in a	formula	magnitude of cross			
	plane - rectangular	Know the	product.			
	components.	various kinds	Apply the concept in finding the			
	Scalar and Vector	of errors.	direction of torque when we			
	product of vectors	Understand	open a screw with the help of			

	Relative velocity. Measurements , systems of units ,dimensional formulas, errors in measurements/	 the concept of dot and cross product of two vectors. Understand the triangle ,polygon and parallelogram laws of vectors. 	lever arm			
July ,15	kinematics Frame of reference, Motion in a straight line: Position-time graph, speed and velocity. Elementary concepts of differentiation and integration for describing motion. Uniform and non- uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity- time and position- time graphs. Relations for uniformly	Understand the difference between one dimension, two dimension and three dimensional motion • Understand the concept of uniform, non uniform and accelerated motion. • Understand the concept of average speed, instantaneous speed . • Understand the difference between speed and velocity . • State the projectile	 Apply the motion in 1D,2D and 3D motion in day to day life e.g. motion of train on straight track(1D),crawling of insect on a wall (2D) and motion of kite in sky(3D). Apply the concept of x-t graph,v-t graph in calculating the velocity ,acceleration and retardation of a train ,vehicle moving with uniform and non uniform speed. Apply the concept of projectile motion in calculating time of flight of a bag or bomb when they are being dropped from a plane. Apply the concept instantaneous and 	Lab Activities Velocity of a ball on incline plane. Velocity of pendulum when it passes through mean position and extreme position during oscillations. 	 Students will learn to differentiate between one dimension, two dimension and three dimensional motion . the concept of uniform,non uniform and accelerated motion. the concept of average speed, instantaneous speed . the difference between speed and velocity . the projectile motion ,maximum range,heightand time of flight. the uniform and non 	Students will be assess on the basis of observation and calculations skills

	accelerated motion (graphical treatment).	motion ,maximum range, height and time of flight. State the uniform and non uniform circular motion	 average velocity during non uniform motion and in speedometer. Apply the concept of max.range of a ball in a match and with the same effort a sportsman can increase the range of his shot if he hit the ball at an angle of 45 degree, 		uniform circular motion.	
July,11 August, (9)	Laws of Motion - force (balanced and unbalanced force) and motion, Newton's laws and its applications, inertia, momentum, Impulse, law of conservation of linear momentum. Connected pullies and elevator problems	 Understand the difference between balanced and unbalanced forces. Understand the concept of force. Understand the concept of inertia and its types. Understand the keys of Newton's laws. Formulate the Newton's second law of motion. Understand the concept of 	 Apply the inertia of rest and motion like when a person standing in a bus falls backward when bus is start moving suddenly. analyze the concept of Newton's laws in daily actions like when a fielder pulls his hand backward; while catching a cricket ball Apply the concept of impulse and momentum in cricket or any game during collision. 	 Lab Activity Verification of law of parallelogram And determination of unknown weight Determination of coefficient of friction on horizontal surface Determination of coefficient of friction on an inclined plane 	 Student will learn concept of force and difference between balanced and unbalanced forces. They have learned the concept of inertia and its type. They have learned the keys of Newton's laws. They have learned the to formulate the Newton's second law of motion. They have learned the concept of momentum and impulse. They have learned the concept and types of collision. and Momentum of body 	Logical and application skills will be asses by giving numerical questions on

	and impulse.			 They have learned the application of inertia of rest and motion in day to day life They have learned the application and concept of Newton's laws in daily actions. 	
August,11Work pow Energ Work don constant for variable f kinetic er ,work en theorem, p Notion of po energy, poto energy of a conservative forces, conservative forces, elast inelastic col in one and t dimensions.	er and y.• Understand the concept of Scalare by a rce and force, nergy ergy ower.Product, Work Done By Constant Force And Variable Forceotential ential ential ential spring, e ic and lisions• Understand concept of kinetic energy theorem and power.of e ic and lisions two• Understand concept of kinetic energy theorem and power.ower e e ic and lisions two• Understand the concept potential energy.understand the concept of conservative and non conservative forces	 Apply the concept of conservative and non conservative force in terms of smart working and hard working. For proper output in working the importance of direction. Apply the concept of work energy theorem in routine that whatever amount of energy we have accordingly we do the work By using the concept of potential energy we can increases the efficiency of work done 	Class Room Activities • By demonstrating the activity using spring balance and bob the potential energy stored in an object will be explained. And by law of conservation of energy the speed of an object when falling from a certain height will be calculated and using the value of speed kinetic energy will be calculated	 Students will learn The concept Work done by a constant force and variable force The application of law of conservation of energy. To differentiate between elastic and inelastic collision. Different types of work done . 	On the basis of observation and calculations skills

September,24	Centre of mass and Rotational Motion and centre of mass of two-particle system, momentum conservation and centre of mass motion, centre of mass of rigid body, centre of mass of uniform rod. Vector product of vectors, moment of force, torque, angular momentum, conservation of angular momentum with some examples. Equilibrium of rigid bodies, comparison of linear and rotational motion, moment of inertia and radius of gyration. Values of moments of inertia for simple geometrical object, statement of	 Understand the concept of centre of mass. Understand concept of vector product of vectors. Understand the concept of equilibrium. Understand the concept of torque, angular momentum. State the theorem of parallel axes and perpendicular axes. To understand the concept of moment of inertia of different shapes 	 Application of concept of centre of mass in balancing the temperament opposite circumstances Using concept of torque how a door can be opened and closed same as the handle of a bicycle can turn the rim Concept of equilibrium can be used in balancing the contradictions in life. 	Using C.D. and ring moment of inertia and centre of mass will be demonstrated	 Students will be able to learn The concept centre of mass motion, centre of mass of rigid body The comparison of linear and rotational motion The concept of moment of inertia the concept of moment of inertia. The concept of torque and applications of torque 	Students will be assess on the basis of observation and calculations skills

parallel and perpendicular axe theorem and their applications.October 15Gravitation	s		Determination of	• Students will	Students will
Kepler's laws of planetary motion The universal law of gravitation, Acceleration due to gravity and its variation with altitude and depti gravitational potential energy gravitational potential, Escape velocity, critical velocity, orbital velocity of a satellite. Geostationary satellite	 State the Newton's law of gravitation and Kepler's law of planetary motion Understand to differentiate gravity and gravitation. Understand concept of acceleration due to gravity. Understand to differentiate gravitational potential and gravitational potential and gravitational potential energy. Understand the concept of centre of mass. Understand concept of 	 By the law of gravitation when body thrown up finally falls down towards the earth Therefore we have to be down to earth. Importance of Kepler's law to understand the orbital velocity and gravitational force . Concept of gravitational potential energy 	 Determination of acceleration due to gravity by simple pendulum Using pendulum of different masses ,verification of laws of time period 	 How the launching of satellite is done Variation in acceleration due o gravity with height and depth. Potential and gravitational potential energy. How the energy of satellite is calculated 	be assess on the basis of observation and calculations skills

October,7 November,20	vector product of vectors.Properties of Matter: 1.Solids- Elastic behavior of 	 Apply Hook's law in day to day life as a limit of flexibility in behavior according to the situation Apply the Pascal's law to reduce the pressure in life by distributing it in different ways. Applications principle of floatation in kipping the things stable in day to day life. Apply the concept of viscosity by using lubricants in automobiles and other machinery. Apply the concept of reflecting and absorbing properties of a substance food items can keep fresh, using silver foils. 	Lab Activities Determination of coefficient of viscosity of glycerin by estimating terminal velocity Determination of Yung's modulus of elasticity by Sear'ls apparatus 	 The concept Elasticity The application of Pascal's law. The concept of surface tension of liquid, surface energy The applications Bernoulli's theorem Thermal properties of matter, Heat, Temperature, Anomalous expansion of water, expansion of gases, Specific heat capacity, water equivalent, change of state, latent heat, calorimetric, two principal specific heats of gas . 	Students will be assess on the basis of observation and calculations skills
	forces, importantprincipalterms related tospecific heatsstudy of surfacestudy of surface				

	<pre>cursion of inquiti, surface tension, surface energy, excess pressure, angle of contact, capillarity, ascent formula. 3.Hydrodynamics; viscosity, Poiseuille's formula, Stoke's law, terminal velocity, streamline turbulent and Laminar flow, critical velocity, Reynold's number, equation of continuity, Bernoulli's theorem, Blood pressure.</pre>	 Understand the applications of Pascal's law in Hydraulic lifts and breaks, Understand various parts of human bodies carries different blood pressure . Understand why the cooking utensils are provided with wooden handles . 				
December 20,	Thermodynamics and KTG Thermal properties of matter; Heat, Temperature, thermal expansion, types of thermal expansion,	 Understand the concept thermal equilibrium Understand the terms thermodynamic variables State Zeroth law, first law, second law, of 	 How the concept of heat engine applied in petrol engine and diesel engine. How the efficiency of an engine can be increased. Create the interest in mechanical. And petroleum engineering 	Lab Activity Verification of Newton's law of cooling	 The meaning of thermodynam ics The concept of isothemal process and adiabatic process. The principle 	Students will be assess on the basis of observation and calculations skills

Anomalous	thermodynamics		and working
expansion of			of
water, expansion	n o Understand		refrigerator,
of gases, Specific	the mechanism		heat engine.
heat capacity,	of carnot		-
water equivalent	t, engine and		
change of state,	heat engine.		
latent			
	• Understand		
	various process of		
Thermal	thermodynamics		
equilibrium,			
Zeroth law of			
thermodynamics	5,		
thermodynamic			
state variables an	nd		
equation of state	·,		
indicator diagram	m		
or p-v diagram,			
isothermal chang	ge,		
Adiabatic change	e,		
slopes and work			
done of isotherm			
and adiabatic			
changes, isobario	c		
and isochoric			
changes, first law	N		
thermodynamics	S,		
Applications of t	ine		
first law ,cuchc			
and non cyclic			
process, heat			
engine, carnot			
engine, principle			
of refrigerator,			

set the ga ass co pr int ter sp me of eq en on ap sp ca co fre	cond law of hermodynamics. ases - sumptions, oncept of ressure. Kinetic terpretation of mperature; rms beed of gas olecules; degrees freedom, law of juipartition of hergy (statement hy) and oplication to becific heat spacities of gases; oncept of mean ee path,						
January,23 Os W Pe tim fre dis fun Pe Sin me an ph	scillations and Vaves eriodic motion - me period, equency, splacement as a inction of time. eriodic functions. mple harmonic otion (S.H.M) nd its equation; nase; oscillations	Understand the concept of Periodic motion Understand the terms time period, frequency, displacement as a function of time Understand the Free, forced and damped oscillations	0 0 0	The concept of free and forced oscillations is used in constructions of buildings Concept of time period can be applied while swinging. In different musical instruments	 Lab activities Conceptofperiodic motion and oscillations with the help of simple pendulum. Formation of stationary waves by sonometer Formation of stationary waves by resonance column 	 Students wii have learn - the concept of Periodic motion time period, frequency, Free, forced and damped oscillations Wave motion. Transverse and longitudinal waves, speed of wave motion. Displacement relation Principle of superposition of waves, 	Students will be assess on the basis of observation and calculations skills

of a spring	(auglitative ideas	concent of	reflection of waves
vi a spring-	(quantative ideas	superposition of	standing
forme constants	Understand	superposition of	Statiung Understand Dringing of
iorce constant;	• Understand Wave motion	waves can be	• Onderstand Principle of
energy in S.H.M.	wave motion.	appned	superposition of waves,
Kinetic and	I ransverse and	 How Donnler's 	reflection of waves,
potential energies;	longitudinal waves,	effect is used to	standing waves in strings
simple pendulum-	speed of wave motion.	determine the	and organ pipes,
derivation of	Displacement relation	distance of objects	fundamental mode and
expression for its	• for a progressive	on the basis of	harmonics, Beats,
time period.	wave. Principle of	reflection of sound	Doppler effect
Free, forced and	superposition of	reflection of sound	
damped	waves, reflection		
oscillations	of waves,		
(qualitative ideas	standing		
only), resonance.	• Understand		
Waya motion	Principle of		
Transvorsa and	superposition of		
longitudinal	waves, reflection		
wayos speed of	of waves,		
waves, specu of	standing wavesin		
Displacement	strings and organ		
relation	pipes,		
for a prograssiva	fundamental		
waya Principle of	mode and		
superposition of	harmonics, Beats,		
wayos reflection	Doppler effect		
of waves, standing			
of waves, standing			
in strings and			
in strings and			
fundamental made			
and harmonics			
and narmonics, Deate Depuis			
beats, Doppier			
enect			

February (5) Revision	Revision	Revision	Revision	Revision	Revision