CHOITHRAM SCHOOL MANIKBAGH INDORE CLASS IX, Session: 2017-18

MATHEMATICS Subject: Allotment Date: 17/11/17

Assignment No: 3

Submission Date: 22/11/17

S.No	QUESTION	MARKS	LEVEL
	OBJECTIVE TYPE		
1	The quadrilateral formed by joining the mid points of sides of a quadrilateral	1	Knowledge
	PQRS, taken in order, is a rectangle, if	mark	
	(A) PQRS is a rectangle (B) PQRS is a trapezium		
	(C) Diagonals of PQRS are unequal (D) None of these		
2	The median of a triangle divides it into two	1	Understanding
	(A) Triangles of equal area (B) Congruent triangles	mark	
	(C) Right triangles (D) Isosceles triangles		
3	If a parallelogram and a rectangle are equal in areas and have the same base		ЧОТ
	and are situated on the same side, then the quotient of	mark	11.0.1.
	perimeter of parallelogram is		
	(A) equal to 1 (B) greater than 1 (C)less than 1 (D) indeterminate		
	SHORT ANSWER TYPE I		
4	In the given figure BC EF, EB AC and CF AB. Prove that area	2 Marks	Knowledge
	$(\Delta AEB) = (\Delta ACF)$		
	A		
	x y		
	B C		
5	Prove that parallelograms on the same base and between same parallels are	2 Marks	Understanding
5	equal in area.	2 Warks	enderstanding
6	If an angle of a parallelogram is two-third of its adjacent angle, find all	2 Marks	logic
	the interior angles of the parallelogram.		C
7	The medians BE and CF of a triangle ABC intersect at G. Prove that area of	2 Marks	H.O.T.
	Area of ΔGBC = Area of quadrilateral AFGE		
	SHORT ANSWER TYPE II		
8	If the two diagonals of a parallelogram are equal, then prove that it is a	3 Marks	Understanding
	rectangle.		
9	A farmer has distributed his field in the form of a parallelogram amongst his	3 Marks	Value based
	son and daughter. According to the given figure area of triangle BAC of the		
	land was given to son and combined lands comprising of area of triangle		
	AEB and area of triangle DAC to his daughter \underline{E} A \underline{D}		
	(a) Is the distribution of land between son and daughter equal? Justify		
	your answer		
	(b) What value inculcated by the farmer.		
10	State and prove the converse of Midpoint theorem	3 Marks	Multi concept
11	Prove that the line joining the mid points of the diagonals of a trapezium is	5 Marks	H.O.T.
	parallel to the parallel sides of the trapezium and is equal to half the		
	anterence of these sides.		
12	ABCD is a trapezium in which $AB \parallel DC$, $DC = 30$ cm and $AB = 50$ cm. If X	5 Marks	Logic
	and Y are respectively the mid points of AD and BC, prove that area $\frac{7}{7}$		
	$(DCYX) = \frac{7}{9} \operatorname{area} (XYBA)$		