CHOITHRAM SCHOOL, MANIK BAGH, INDORE

ANNUAL CURRICULUM PLAN SESSION 2017 – 2018

CLASS: XI

SUBJECT: Biotechnology

Month &	Theme/ Sub-	Learning Obj	ectives	Activities &	Expected	Assessment
Working	theme	Subject Specific	Behavioural	Resources	Learning	
Days		(Content Based)	(Application based)		Outcomes	
June16 days	Biotechnolog	• To help the learners	• To develop	Instrumentation	• List out	1. Unit test
	y: An	know and understand	conceptual		tools,	2. Half yearly
	Overview	basic facts and concepts	competence in the	To study and	technique	exams
	BIOTECHN	of the subject at	learners so as to	perform various	and	3. Assignments
	OLOGY	elementary stage.	cope up with	sterilization	instruments	
	WITHIN	• To expose the students to	professional	techniques	used in	
	YOUR	different basic processes	courses in future		biotechnolo	
	REACH	and basic techniques	• To acquaint	Preparation of solid	gy lab.	
		used in Biotechnology	students with	and liquid media	• To	
		• To make them	different		comprehend	
		understand, modern	applications of		about	
		biotechnology has	biotechnology in		various	
		integrated several	everyday life		including	
		disciplines, varying from	• To develop an		health,	
		physics, chemistry,	interest in		agriculture	
		biology, engineering,	students to study		and	
		economics, law and	biotechnology as		industries,	
		management	a discipline		• To apply he	
		• To familiarize students	• To prescribe		production	
		with the development in	practical work		strategies in	
		biotechnology field and	will make the		biotech	
		its applications in health	learners		• To analyze	
		care and agriculture.	competent to		the global	

July – 24 GENETICS	 To frammatize the learners to understand the relationship of the subject to health, nutrition, environment, agriculture, industry, etc To study the production strategies in biotech To know the global market of biotech products. To understand public perception of biotechnology. To learn scenario of biotechnology in India and global trends. To introduce student to biotechnology lab To comprehend about various tools and techniques used in biotechnology lab. 	 neet the challenges of academic as well as professional courses after studying the subject at senior secondary stage To learn safety rules in biotechnology laboratory To analyze the importance of aseptic environment needed in biotechnology lab. To inculcate scientific temperament in students. 	• 1.To find your	 Inarket of biotech products. To evaluate public perception of biotechnolo gy. The scope biotechnolo gy in India and global trends. Apply sterilization technique and follow aseptic condition in biotechnolo gy lab. To develop conceptual competence in the learners so as to cope up with professional courses in future To explain 	1. Unit test
--------------------	--	--	------------------	--	--------------

days	AND	perspective		that traits are		own blood group		Mendel's	2. Half yearly
-	MOLECUL	• Studying of mandelian		observable		by agglutation		principles of	exams
	AR	genetics		characteristics that		method		inheritance and	3. Assignments
	BIOLOGY	• Understanding laws of		are passed down from				apply these to	4. participation
	GENETICS	inheritance, incomplete and		parent to child.	•	2. To find the		problems of	in Panel
		codominance	•	An individual will		amount of blood		inheritance	discussion
		• Concept of linkage and		have many traits they		glucose in a	•	Describe the	
		crossing over		share in common		sample by GOD/		different forms	
		• Study of gene mapping and		with others.		POD method		of inheritance	
		gene interaction additive and	٠	An individual's				patterns and	
		non additive effects		overall combination	•	3. To Prepare		identify these in	
		• Understanding extranuclear		of traits makes them		Karyotype and to		genetic data	
		and quantitative inheritance		unique.		check	•	Describe	
		• Study of genes at the	٠	Students will		chromosomal		various types of	
		population level.		inventory their own		abnormalities		genetic crosses	
		• Discovery of DNA as genetic		inherited traits, they				and indicate	
		material		will know if they are	•	4. Discussion		when/why they	
		• Understanding molecular		prone to any genetical		will be carried in		would be used	
		mechanisms of mutation		disease		class regarding		by a geneticist	
		• Study of various DNA repair	٠	Students will able to		the acceptance of	•	Explain more	
		mechanisms		take precaution if		eunuchs and		complex modes	
				they are prone to any		transgender in		of inheritance	
		• Analyze genetic disorders		genetical diseases		society.		and how sex	
		and their effect on human	•	Illustrate some		7 1 1		influences the	
		health		cutting-edge thinking	•	5.observe how		inheritance and	
		• Genome organization and		on scientific practices		their trait		expression of	
		difference between		today with		from those of		genes (e.g. sex-	
		prokaryotic and eukaryotic		implications for		athens. Students		traite	
August -22		genome		science education.		record their		cytoplasmic	
davs		• Understanding the molecular	•	Learner will to raise		observations in a		inheritance	
September -		mechanism of DNA		voice against gender		data table and		genomic	
22 days		replication		uiscrimination		make a har graph		imprinting)	
2	MOLECUL	• Definition of gene and	•	They will learn to		to show the most	•	Use this	
	AR	understanding how genes		born with consticulty		and least	-	information in	
		transcribes message to RNA		born with genetically		und roust		Intornation III	

BIOLOGY	Basic process of		disorders	common traits in		predicting	
	transcription	•	They will imbibe	the group		genetic	
	• Study of genetic code		eunuchs are humans	0 1		outcomes and	
	• Understanding the		born with sexual			the analysis of	
	procedure how RNA		abnormality			genetic data	
	translates into protein	•	Students will get		•	Students will be	
	Regulation of gene		awarded that blood			able to apply	
	expression in prokarvotes		group determination			principles of	
	and eukarvotes		is necessary before			heredity in	
	 Student will learn blood 		donation.			assessment of	
	group determination					pedigrees to	
	 Students will able to check 					identify	
	whether the person is					genotypes of	
	hypoglycaemic or					family	
	Hyperglycaemic					members,	
	Trypergryeachine.					conclude the	
						mode of	
						inheritance for a	
						trait, and predict	
						mating	
						outcomes.	
					٠	Compare the	
						effect of linkage	
						and independent	
						assortment on	
						genetic	
						outcomes and	
						assess data to	
						determine if	
						genes are linked	
						or on separate	
						chromosomes	
					•	Explain how	
						crossing over	
						produces	

			recombination
			and use
			recombination
			frequencies to
			construct a
			genetic map
		•	Use genetic
			maps to
			predict gamete
			outcomes
		•	Describe some
			of the methods
			that can be used
			to place a gene
			on a particular
			chromosome
			(e.g. FISH)
		•	Describe and
		-	recognize a
			variety of
			abnormalities in
			chromosome
			structure and
			survivic allu
			avplein how
			explain now
			urese anomanes
			detected
		•	Explain the
			molecular
			structure of
			chromosomes
			as it relates to
			storage, gene
			expression, and

		sequence
		function
		 Describe corly
		studies that led
		to DNA as the
		genetic material
		and/or interpret
		results from
		these studies
		• Indicate
		similarities and
		differences
		molecular
		structure of
		DNA and RNA
		• Describe the
		historic
		experiment that
		demonstrated
		DNA
		replication
		follows a semi-
		conservativo
		model
		• Analyze the
		process of DNA
		replication in
		prokarvotes at
		the biochemical
		level
		• Explain now
		proofreading
		and repair is
		accomplished
		during DNA

synt	hesis
• desc	ribe how
DNA	A is
repli	cated in
virus	ses.
plasi	mids, and
euka	rvotes and
iden	tify
simi	larities and
diffe	erences
betw	veen these
and	replication
	rokarvotes
	ribe at the
	homical
	i the events
	occur to go
Irom	i gene to
phen	notype
• Iden	tify
diffe	erent types
of R	NA, note
their	properties,
how	they are
proc	essed to
yield	la
func	tional form,
and	their
func	tion in gene
expr	ession
Reco	ognize the
impo	ortance of
regu	lating gene
expr	ession in

					eukaryotes and describe the levels at which gene expression is controlled and the mechanisms used by prokaryotes and eukaryotes	
October November	BIOMOLEC ULES	 BIOMOLECULES building blocks of biomolecules To study structure and dynamics of building blocks of carbohydrate Understanding mono and disaccharides structure Structure, physical, chemical properties of building block of proteins-amino acids Structure and dynamics of lipids Study of simple fatty acid, sphingosine, glycerol and cholesterol. Structure and properties of nucleotides To study and understand biochemical transformation study of structure of ATP Study of glycolysis 	 understanding of the core principles and topics of Biochemistry and their experimental basis, and to enable students to acquire a specialized knowledge To enable learner that biomolecule rarely works in isolation, they interact with each other to form large super molecular assemblages. Make them understand the 	To estimate protein by biuret method To isolate milk protein casein from milk	 Learners will understand structure and dynamics of building blocks of carbohydrat eUnderstand ing mono and disaccharide s structure Explore and Analyze the Structure, physical, chemical properties of building block of proteins- amino acids 	1. Unit test 3. Assignments

pathway and its	working of	Structure
sionificance	biomolecules in	and
 Study of Krahe cycla 	both health and	dynamics of
amphibolic pathway	disease	linids
• Homoformontative and	uisease	simple fatty
• Homorefinemative and	• To make them	acid
neterorermentative	• To make them	aciu,
pathways	aware of methods	spiningosine,
• Understanding	to manipulate	gryceror and
photosynthesis processes.	cells and	cholesterol.
Diagram of chloroplast	constituents for	• Understand
Light reaction-Zscheme	human welfare.	theStructure
Dark reaction- CALVIN		and
CYCLE	• To make them	properties of
• Difference between C3	realize how	nucleotides
and C4 cycle	biochemical	and apply to
• Definition of nitrogen	transformation	synthesize
fixation and study of	take place inside	structure of
nitrogen cycle	living bodies	DNA and
• Understanding the	which are	RNA
activities of nitrogenase'	necessary for	Understand
and their utility in	survival.	how ATP
organic farming		act as
Structure and function of	• Fermentative	reservoir of
macromoloculos	potential of	energy.
Difference between	microorganism s	• Impotance
• Difference between biomoloculas and	can be realized	of
macromoloculos	and optimized for	biochemical
	production of	• Learner will
• Organization of	commercial	understand
monosaccharide to form	products	how
polysaccharides	· ·	respiration
• Study of carbohydrates	• Explore the	is carried in
as energy givers	enzyme	living cell.
	nitrogenise how it	they will get
	helps in nitrogen	detail

	fixation which	knowledge	
	an load to	of	
	call lead to		
	organic farming	glycolysis	
		pathway and	
	• Apply the	its	
	Understanding of	significance	
	catabolic nature	Krebs cycle	
	of respiration and	–amphibolic	
	anabolic nature of	pathway	
	photosynthesis in	• Homoferme	
	calculating energy	ntative and	
		heteroferme	
		ntative	
		pathways	
		• Students	
		will learn	
		how plant	
		prepare their	
		food	
		through	
		nhotosynthe	
		sis. They	
		sis. They	
		in longth	
		in length	
		about	
		various	
		cycles	
		involve in	
		this process.	
		processes.	
		Diagram of	
		chloroplast	
		Light	
		reaction-	
		Zscheme	

					Dark reaction- CALVIN CYCLE Difference between C3 and C4 cycle Definition of nitrogen fixation and study of nitrogen cycle Understandi ng the activities of nitrogenase' and their utility in organic farming	
December	Cont	 Study of proteins the performers Structure of protein Understanding sequencing strategies Study of enzymes and their role as catalyst. To understand why nucleic acids are called as managers To study lipids and biomembrane as barriers. 	 Understand the role of proteins as performers Structure of protein Understanding sequencing strategies Study of enzymes and their role as catalyst. 	Study of various protin sample and plot the graph of their absorbtion	Difference between biomolecule s and macromolec ules Organizatio n of monosaccha ride to form polysacchari	

		•	• To understand why nucleic acids are called as managers To study lipids and biomembrane as barriers		des • Study of carbohydrat es as energy givers •	
December						
January	CELL GROWTH AND DEVELOPM ENT	 Cell growth and development To study cell division. To understand the difference between mitosis and meiosis and their significance To study cell cycle and its regulation To understand how cell communicate with each other. To study how internal environment is maintained within the cell. To study immune response in humans and animals To understand the defense mechanisms in plants To study cell division. To understand the difference between 	 To make them understand how cells communicate among themselves or with environment Provide the students with a fundamental knowledge of some of the biochemical reactions involved in plant growth and development. 	To study mitosis through onion roots and prepare mitotic index.	• Students learnt all organ system work together to make functional organismDe scribe cytological, biochemical , physiologica	Unit test 3. Assignments

mitosis and meiosis and	• Develop a	l and genetic
their significance	comprehensive	aspects of
• To study cell cycle and	understanding of	the cell,
its regulation	the hormonal and	including
• To understand how cell	environmental	cellular
communicate with each	regulation of gene	processes
other.	expression.	common to
• To study how internal	Appreciate the	all cells, to
environment is	variety and the	all
maintained within the	significance of	eucaryotic
cell.	the reproductive	cells as well
• To study immune	strategies	as processes
response in humans and	employed by the	in certain
animals	plants and	specialized
• To understand the	animals	cells.
defense mechanisms in	• Understand the	Relate
plants	chemical	normal
•	interactions	cellular
	involved in	structures to
	energy flow in	their
	plant systems,	functions.
	plant	• Explain
	development and	cellular
	physiology of	processes
	adaptation to	and
	stress.	mechanisms
		that lead to
		physiologica
		1 functions
		as well as
		examples of
		pathological
		state.
		• Apply
		modern

		cellular	
		techniques	
		to solve	
		aspects of	
		scientific	
		problems.	
		• Describe the	
		intricate	
		relationship	
		between	
		various	
		cellular	
		structures	
		and their	
		correspondi	
		ng	
		functions.	