CHOITHRAM SCHOOL, MANIK BAGH, INDORE ANNUAL CURRICULUM PLAN SESSION 2018–2019

CLASS: -XII

SUBJECT: -PHYSICS

Month &	Theme/ Sub-	Learnir	ng Objectives	Activities & Resources	Expected Learning	Assessment
Working Days	theme	Subject Specific	Behavioural		Outcomes	
		(Content Based)	(Application based)			
March ,12	Electrostatics Electric Charges; Conservation of charge, Coulomb's law-	 Student will be able to Understand the concept of charge Understand concept of electrostatic 	 Students will be able to Apply the concept of static electricity in selection of cloths as per the weather conditions 	Teacher will start the topic by asking the following questions related to the previous knowledge 1. When we take off our synthetic shirts or nylon	 Students have learned The concept electrostatic force and field. 	Conceptual type questions , numerical and unit test.
	force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines, electric field due to a dipole, torque on a dipole in uniform electric field.	 force and field. State the Coulomb's law of electrostatic force. Understand the concept potential. Understand the concept of capacitor. Understand the electric dipole and electric field due to an electric dipole. Understand the electric potential and potential gradient. Understand the potential energy and torque due to an electric dipole. 	 By using the concept of electrostatics students can protect themselves from lightning. Distinguish between parallel plate and cylindrical capacitors and their uses . Apply the concept and principle of capacitor in forming home made capacitor. Apply the concept of charging to charge any conductor at home. 	 sweaters a spark is produced. Why? 2. By rubbing palms we experience a different feeling. Why? 3. Why does the mustard seeds adhere to the walls of the polythene bag 4. If an electrically charged rod is brought near normal flow of water from a tap, the flow gets slightly diverted towards the rod. Why? Now according to the response of the students the explaination of the topic will be started ,through lecture method the concept of force and electric field will be explained. By demonstrating the activity of charging 	 The application of torque in rotating a dipole Energy of a capacitor and uses of capacitor in different appliances. The applications of Gauss's theorem Drawing the electric field lines and presence of electric field. 	

Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside). Electric potential, potential difference, electric potential difference, a dipole and system of charges;	polythene and glass rod by rubbing to each other the types of charges and property of attraction of two unlike charges will be explained. By lecture method concept of potential and electric field will be explained. Using regulators of a fan the construction ang working of capacitors will be discussed. Assignment questions 1. Plotting of graph showing the variation of Coulom force versus distane between two similar and two dissimilar charges. 2. How you can charge a metal sphere negatively without touching ?3. Drawing of electric field lines around the charges. 4. Applications of Gauss's theorem. 5. Numerical questions on	
-		
±		
outside).	between two similar and	
Electric	U	
±		
-	3. Drawing of electric field	
-		
	11	
equipotential	capacitors.	
surfaces,		
electrical		
potential energy		
of a system of		
two point		
charges and of		
electric dipole in		
an electrostatic		
field.		

	Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation, capacitors and capacitors and capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor. Van de Graaff generator.				
April,12+8	Current electricity Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and	 Student will be able to Understand the concept of electric current and potential difference . Understand the difference between 	 Apply the concept of current and potential difference on measuring the resistance of conductor /electrical appliances at home. Apply the concept 	i)First of all teacher will ask the questions based on their previous knowledge. The teacher will explain the electric current its uses and he electrical appliances which draw more or less current in accordance with their resistance. <i>Ampere:</i> of current means the flow of	Conceptual type questions , numerical and unit test

June,16	their relation with electric current; Ohm's law, electrical resistance, Current Electricity (Cont.) V-I characteristics (linear and non- linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance. Internal resistance of a cell, potential	 drift velocity and mobility of electrons in a conductor. State the Ohm's law and understand the Ohmic conductor. Understand the concept of electric power, electrical resistivity and conductivity Understand the difference between resistance and resistivity. Understand the colour coding in carbon resistor and the dependence of internal resistance of a cell on its temperature. Understand the concept of combination of resistances Know the difference between emf and potential difference. 	 mobility of electrons in calculating the drift velocity in different conductors and alloy. Student will be able to plot the graph between the V and I and then they will calculate the resistance of conductor by the slope of same graph. Apply the concept for electrical power and energy to calculate the electricity bill of their home, factory or offices. Apply the concept of series and parallel combination of resistances if desired 	 6.25 × 10¹⁸ electrons/sec through any cross-section of the conductor. The conventional direction of current is taken to be the direction of flow of positive charge, i.e. field and is opposite to the direction of flow of negative charge as shown below. The net charge in a current carrying conductor is zero. For a given conductor current does not change with change in cross-sectional area. In the following figure i₁ = i₂ = i₃ ii)The teacher will explain the graph between V and I ,and will explain them the calculation of R by the slope of graph. Ohm's law is not a universal law, the substances, which obey ohm's law are known as ohmic substance. Graph between V and i for a metallic conductor is a straight line as shown. At different temperatures V-i curves are different. Class room Activites : 		
---------	---	---	--	---	--	--

difference and emf of a cell,combination of cells in series and in parallel. Kirchhoff's laws and simple applications. Wheatstone bridge, metre bridge. Potentiometer - principle and its applications to measure potential difference and for comparing emf of two cells; measurement of internal resistance of a cell.	 State the Kirchhoff's vltage and current law. Understand principle of wheatstone bridge and potentiometer. 		 i) Teacherwill demonstrate the emf of a cell purchased from market. ii) Teacher will demonstrate the how student will calculate the total no. Of electrons in 1 kg water iii) Teacher will show the electrolyte used in different cell which is being used in laboratory. Lab activities : i) Measurement of unknown resistance by wheat stone bridge. ii) Measurement of specific resistance by wheat stone bridge. iii) Comparison of emfx of two primary cell using potentiometer. Measurement of internal resistance of cell using potentiometer. 		
July ,24 Magnetic effect of current and Magnetism Electromagnetic	 Student will be able to Understand the concept of magnetic field and Oerested 	• Apply the concept of Biot savart's law in calculating the magnetic field due to current	Class room Activites : iv) Teacher will demonstrate the presence of magnetic field due to current carrying conductor.	• The concept of magnetic field and Oerested experiment .	Conceptual type questions , numerical and unit test.

		, . .	
ampere. Torque		permanent magnet and	a current loop
experienced by a		temperory magnet by	in uniform
current loop in	galvanometer-its	observing area of	magnetic field
uniform	current sensitivity	Hysteresis curve.	
magnetic field;	and conversion to		• The moving
moving coil	ammeter and		coil
galvanometer-its current	voltmeter.		galvanometer-
sensitivity and	• Know the Current		its current
conversion to	loop as a magnetic		sensitivity and
ammeter and	dipole and its		conversion to
voltmeter.	1		
Current loop as	a magnetic dipole		ammeter and
magnetic dipole	moment. Magnetic		voltmeter.
and its magnetic	dipole moment of a		• The Current
dipole moment.	revolving electron.		loop as a
Magnetic dipole			magnetic
moment of a	magnetic field		dipole and its
revolving	intensity due to a		magnetic
electron.	magnetic dipole		dipole
Magnetic field	(bar magnet) along		moment.
intensity due to			Magnetic
magnetic dipole	perpendicular to its		dipole moment
(bar magnet) along its axis	axis .		of a revolving
andperpendicula			electron.
to its axis.	ue on a magnetic		• The magnetic
Torque on a	dipole (bar magnet)		field intensity
magnetic dipole			due to a
(bar magnet) in			
uniform	magnet as an		magnetic directo (hor
magnetic field;	equivalent solenoid,		dipole (bar
bar magnet as an	m magnetic field lines;		magnet) along
equivalent	Earth's magnetic		its axis and
solenoid,	field and magnetic		perpendicular
	elements.		

· · · · · · · · · · · · · · · · · · ·			1
magnet		to its axis .	
lines; E	,	• 7	1
magnet		he Torque on a	
and ma		magnetic	
elemen	1	dipole (bar	
Para-,	dia- and Electromagnets and	1 magnet) in a	
ferro -	magnetic factors affecting	uniform	
substar	ces, with their strengths.	magnetic field;	
exa	nples. Permanent magnet	bar magnet as	
Electro	omagnets	an equivalent	
and	factors	solenoid,	
affect	ing their	magnetic field	
stre	ngths.	lines; Earth's	
Perr	nanent	magnetic field	
ma	gnets.	and magnetic	
		elements.	
	magnetic	• 7	-
induction		he Para-, dia-	
	<i>r</i> 's laws,	and ferro -	
	emf and	magnetic	
	Lenz's	substances,	
Law, E	ldy	with examples.	
current		Electromagnet	
	l mutual	s and factors	
induction	on.	affecting their	
Alterna	ting	strengths.	
currents		Permanent	
	s value of	magnets.	
alternat			
	voltage;		
reactan			
	nce; LC		
oscillat			
(qualita			
treatme	nt only),		

LCR series			
circuit,			
resonance;			
power in AC			
circuits, wattless current.			
AC generator			
AC generator and transformer.			

dispersion	of lens and a mirror.	concept in day to day	combination of
light throu	gh a • Understand the	life conditions .	a lens and a
prism.	Refraction and		mirror.
Scattering			• the
light - blue	through a prism		microscopes
colour of s	• Understand the		and
reddish			astronomical
apprearance the sun at			telescopes
and sunset	-		(reflecting and
Optical	apprearance of the		refracting) and
instrument	ts: sun at sunrise and		their
Human ey	Suil at Suillist and		
image for	nation		magnifying
and	• Understand the		powers.
accommod	·		Students will
correction	•		be able to
defects (m	• •		calculate the focal length of
hypermetr			their father's
using lense fronts. Pro	-f -f		convex lens.
laws of ref	Floation		convex lens.
and refract	using lenses.		
using Huy	gen's • Understand the		
principle.	microscopes and		
Interference	ce, astronomical		
Young's de	ouble telescopes		
slit experi			
and expres	forfacting/ and then		
for fringe			
coherent s	ources		
and sustain interference			
light. Diffi			
due to a si			

		T		[]	 ,
	slit, width of				
	central				
	maximum.				
	Microscopes and				
	astronomical				
	telescopes				
	(reflecting and				
	refracting) and				
	their magnifying				
	powers.				
	Wave optics:				
	wave optics:				
	Wave front and				
	Huygen's				
	principle,				
	reflection and				
	refraction of				
	plane wave at				
	aplane surface				
	using wave				
	ļi	ļi	ļ	ļ	ļ
September,22	Optics(cont.)				
	Resolving power				
	of				
	microscopes and				

astronomical telescope. Polarisation, plane polarised light, Brewster's law, uses of plane polarised light and Polaroids. Dual nature of matter and EM	 Understand the concept of 	 Apply the concept of dual nature in day to day 		
Waves. Dual nature of radiation. Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light. Matter waves- wave nature of particles, de Broglie relation. Davisson- Germer experiment (experimental details should be omitted; only conclusion	 photoelectric effect. Understand the threshold frequency. State the laws of photoelectric effect. Understand the Einsyein's photoelectric equation. Understand the Davisson and Germer Experiment. 	life		

October ,7	should be explained). Atom and Nuclei Atom and			
	Nuclei(Cont.) Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivity- alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with	 Understand the Rutherford experiment Understand the Bohr model, energy levels, hydrogen spectrum. State the laws of photoelectric effect. Understand the Einsyein's photoelectric equation. Understand the Davisson and Germer Experiment. 		

November,23Electronic devices Energy bands in solids (Qualitative ideas only) conductor, insulator and semiconductor diode - I-V characteristics in forward and reverse bias, diode as a rectifier; I- Vcharacteristics of LED, photodiode, solar cell, and Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor, transistor as an amplifier	 Understand the n type and p type semiconduct or Understand the diode Understand the transistor and its characteristi cs. Understand the energy band gaps in conductor, se miconductor and insulator 				
---	--	--	--	--	--

(common emitter configuration) and oscillator.			
Electronic Devices (Cont.) Communication System and EM Waves	Elements of a communication system (block diagram only); bandwidth of signals (speech, TV and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves inthe atmosphere, sky and space wave propagation. Need	 Lab Activities Characteristic of PN junction diode. Characteristics of Zener diode. Transistor characteristics. 	

		for modulation.		
		Production and		
		detection of an		
		amplitude-		
		modulated wave.		
December	Revision			